Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo.

نویسندگان

  • Albert A Davis
  • Jason J Fritz
  • Jürgen Wess
  • James J Lah
  • Allan I Levey
چکیده

Alzheimer's disease (AD) is a progressive neurological disorder that causes dementia and poses a major public health crisis as the population ages. Aberrant processing of the amyloid precursor protein (APP) is strongly implicated as a proximal event in AD pathophysiology, but the neurochemical signals that regulate APP processing in the brain are not completely understood. Activation of muscarinic acetylcholine receptors (mAChRs) has been shown to affect APP processing and AD pathology, but less is known about the roles of specific mAChR subtypes. In this study, we used M(1) mAChR knock-out mice (M(1)KO) to isolate the effects of the M(1) mAChR on APP processing in primary neurons and on the development of amyloid pathology in a transgenic mouse model of AD. We demonstrate that the loss of M(1) mAChRs increases amyloidogenic APP processing in neurons, as evidenced by decreased agonist-regulated shedding of the neuroprotective APP ectodomain APPsalpha and increased production of toxic Abeta peptides. Expression of M(1) mAChRs on the M(1)KO background rescued this phenotype, indicating that M(1) mAChRs are sufficient to modulate nonamyloidogenic APP processing. In APP(Swe/Ind) transgenic mice, the loss of M(1) mAChRs resulted in increased levels of brain Abeta and greater accumulation of amyloid plaque pathology. Analysis of APP metabolites in APP(Swe/Ind) brain tissue indicates that the loss of M(1) mAChRs increases amyloidogenic APP processing. These results indicate that the M(1) mAChR is an important regulator of amyloidogenesis in the brain and provide strong support for targeting the M(1) mAChR as a therapeutic candidate in AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MUSCARINIC RECEPTOR SUBTYPES IN SMOOTH MUSCLE FROM THE BODY OF HUMAN STOMACH

Up to date, there are four pharmacologically characterized subtypes of muscarinic receptors (M1, M2, M3 and M4). In our study we have investigated muscarinic receptor subtypes in smooth muscle layers of human stomach. Isolated preparations of longitudinal and circular muscle layers from human stomach were used. Acetylcholine, bethanechol, carbachol, pilocarpine and AHR -602 produced concen...

متن کامل

The role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference

Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...

متن کامل

The role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference

Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...

متن کامل

Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors

Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enha...

متن کامل

Importance and prospects for design of selective muscarinic agonists.

There are five subtypes of muscarinic receptors that serve various important physiological functions in the central nervous system and the periphery. Mental functions like attention, learning, and memory are attributed to the muscarinic M1 subtype. These functions decline during natural aging and an early deficit is typical for Alzheimer s disease. In addition, stimulation of the M1 receptor in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 12  شماره 

صفحات  -

تاریخ انتشار 2010